2015년 12월 28일 월요일

life is dawn on the earth 15

life is dawn on the earth 15


I may mention here a peculiar and interesting structure which has
been detected in one of my specimens while these sheets were passing
through the press. It is an abnormal thickening of the calcareous
wall, extending across several layers, and perforated with large
parallel cylindrical canals, filled with dolomite, and running in
the direction of the laminæ; the intervening calcite being traversed
by a very fine and delicate canal system. It makes a nearer approach
to some of the Stromatoporæ mentioned in Chapter VI. than any other
Laurentian structure hitherto observed, and may be either an abnormal
growth of Eozoon, consequent on some injury, or a parasitic mass of
some Stromatoporoid organism overgrown by the laminæ of the fossil.
The structure of the dolomite in this specimen indicates that it
first lined the canals, and afterward filled them; an appearance
which I have also observed recently in the larger canals filled
with serpentine (Plate VIII., fig. 5). The cut below is an attempt,
only partially successful, to show the Amœba-like appearance, when
magnified, of the casts of the chambers of Eozoon, as seen on the
decalcified surface of a specimen broken parallel to the laminæ.
 
[Illustration: Fig. 21_a_.]
 
[Illustration:
Plate V.
 
_Nature-print of Eozoon, showing laminated, acervuline, and fragmental
portions._
 
This is printed from an electrotype taken from an etched slab of
Eozoon, and not touched with a graver except to remedy some accidental
flaws in the plate. The diagonal white line marks the course of a
calcite vein.]
 
 
 
 
CHAPTER V.
 
THE PRESERVATION OF EOZOON.
 
 
Perhaps nothing excites more scepticism as to this ancient fossil
than the prejudice existing among geologists that no organism can be
preserved in rocks so highly metamorphic as those of the Laurentian
series. I call this a prejudice, because any one who makes the
microscopic structure of rocks and fossils a special study, soon learns
that fossils undergo the most remarkable and complete chemical changes
without losing their minute structure, and that calcareous rocks if
once fossiliferous are hardly ever so much altered as to lose all
trace of the organisms which they contained, while it is a most common
occurrence to find highly crystalline rocks of this kind abounding in
fossils preserved as to their minute structure.
 
Let us, however, look at the precise conditions under which this takes
place.
 
When calcareous fossils of irregular surface and porous or cellular
texture, such as Eozoon was or corals were and are, become imbedded
in clay, marl, or other soft sediment, they can be washed out and
recovered in a condition similar to that of recent specimens, except
that their pores or cells if open may be filled with the material of
the matrix, or if not so open that they can be thus filled, they may be
more or less incrusted with mineral deposits introduced by water, or
may even be completely filled up in this way. But if such fossils are
contained in hard rocks, they usually fail, when these are broken, to
show their external surfaces, and, breaking across with the containing
rock, they exhibit their internal structure merely,--and this more
or less distinctly, according to the manner in which their cells or
cavities have been filled. Here the microscope becomes of essential
service, especially when the structures are minute. A fragment of
fossil wood which to the naked eye is nothing but a dark stone, or a
coral which is merely a piece of gray or coloured marble, or a specimen
of common crystalline limestone made up originally of coral fragments,
presents, when sliced and magnified, the most perfect and beautiful
structure. In such cases it will be found that ordinarily the original
substance of the fossil remains, in a more or less altered state. Wood
may be represented by dark lines of coaly matter, or coral by its
white or transparent calcareous laminæ; while the material which has
been introduced and which fills the cavities may so differ in colour,
transparency, or crystalline structure, as to act differently on
light, and so reveal the structure. These fillings are very curious.
Sometimes they are mere earthy or muddy matter. Sometimes they are
pure and transparent and crystalline. Often they are stained with
oxide of iron or coaly matter. They may consist of carbonate of lime,
silica or silicates, sulphate of baryta, oxides of iron, carbonate of
iron, iron pyrite, or sulphides of copper or lead, all of which are
common materials. They are sometimes so complicated that I have seen
even the minute cells of woody structures, each with several bands of
differently coloured materials deposited in succession, like the coats
of an onyx agate.
 
A further stage of mineralization occurs when the substance of the
organism is altogether removed and replaced by foreign matter, either
little by little, or by being entirely dissolved or decomposed,
leaving a cavity to be filled by infiltration. In this state are some
silicified woods, and those corals which have been not filled with but
converted into silica, and can thus sometimes be obtained entire and
perfect by the solution in an acid of the containing limestone, or by
its removal in weathering. In this state are the beautiful silicified
corals obtained from the corniferous limestone of Lake Erie. It may be
well to present to the eye these different stages of fossilization. I
have attempted to do this in fig. 22, taking a tabulate coral of the
genus Favosites for an example, and supposing the materials employed to
be calcite and silica. Precisely the same illustration would apply to a
piece of wood, except that the cell-wall would be carbonaceous matter
instead of carbonate of lime. In this figure the dotted parts represent
carbonate of lime, the diagonally shaded parts silica or a silicate.
Thus we have, in the natural state, the walls of carbonate of lime
and the cavities empty. When fossilized the cavities may be merely
filled with carbonate of lime, or they may be filled with silica; or
the walls themselves may be replaced by silica and the cavities may
remain filled with carbonate of lime; or both the walls and cavities
may be represented by or filled with silica or silicates. The ordinary
specimens of Eozoon are in the third of these stages, though some exist
in the second, and I have reason to believe that some have reached to
the fifth. I have not met with any in the fourth stage, though this is
not uncommon in Silurian and Devonian fossils.
 
[Illustration: Fig. 22. _Diagram showing different States of
Fossilization of a Cell of a Tabulate Coral._
 
(_a._) Natural condition--walls calcite, cell empty. (_b._) Walls
calcite, cell filled with the same. (_c._) Walls calcite, cell filled
with silica or silicate. (_d._) Walls silicified, cell filled with
calcite. (_e._) Walls silicified, cell filled with silica or silicate.]
 
With regard to the calcareous organisms with which we have now to do,
when these are imbedded in pure limestone and filled with the same, so
that the whole rock, fossils and all, is identical in composition, and
when metamorphic action has caused the whole to become crystalline,
and perhaps removed the remains of carbonaceous matter, it may be very
difficult to detect any traces of fossils. But even in this case
careful management of light may reveal indications of structure, as in
some specimens of Eozoon described by the writer and Dr. Carpenter. In
many cases, however, even where the limestones have become perfectly
crystalline, and the cleavage planes cut freely across the fossils,
these exhibit their forms and minute structure in great perfection.
This is the case in many of the Lower Silurian limestones of Canada,
as I have elsewhere shown.[X] The gray crystalline Trenton limestone
of Montreal, used as a building stone, is an excellent illustration
of this. To the naked eye it is a gray marble composed of cleavable
crystals; but when examined in thin slices, it shows its organic
fragments in the greatest perfection, and all the minute structures
are perfectly marked out by delicate carbonaceous lines. The only
exception in this limestone is in the case of the Crinoids, in which
the cellular structure is filled with transparent calc-spar, perfectly
identical with the original solid matter, so that they appear solid
and homogeneous, and can be recognised only by their external forms.
The specimen represented in fig. 23, is a mass of Corals, Bryozoa, and
Crinoids, and shows these under a low power, as represented in the
figure; but to the naked eye it is merely a gray crystalline limestone.
The specimen represented in fig. 24 shows the Laurentian Eozoon in a
similar state of preservation. It is from a sketch by Dr. Carpenter,
and shows the delicate canals partly filled with calcite as clear and
colourless as that of the shell itself, and distinguishable only by
careful management of the light.
 
[Footnote X: _Canadian Naturalist_, 1859; Microscopic Structure of
Canadian Limestones.]
 
[Illustration: Fig. 23. _Slice of Crystalline Lower Silurian Limestone;
showing Crinoids, Bryozoa, and Corals in fragments._]
 
[Illustration: Fig. 24. _Wall of Eozoon penetrated with Canals. The
unshaded portions filled with Calcite._ (_After Carpenter._)]
 
In the case of recent and fossil Foraminifers, these--when not so
little mineralized that their chambers are empty, or only partially
filled, which is sometimes the case even with Eocene Nummulites
and Cretaceous forms of smaller size,--are very frequently filled
solid with calcareous matter, and as Dr. Carpenter well remarks,
even well preserved Tertiary Nummulites in this state often fail
greatly in showing their structures, though in the same condition
they occasionally show these in great perfection. Among the finest
I have seen are specimens from the Mount of Olives (fig. 19), and
Dr. Carpenter mentions as equally good those of the London clay of
Bracklesham. But in no condition do modern Foraminifera or those of
the Tertiary and Mesozoic rocks appear in greater perfection than when
filled with the hydrous silicate of iron and potash called glauconite,
and which gives by the abundance of its little bottle-green concretions
the name of "green-sand" to formations of this age both in Europe and
America. In some beds of green-sand every grain seems to have been
moulded into the interior of a microscopic shell, and has retained
its form after the frail envelope has been removed. In some cases the
glauconite has not only filled the chambers but has penetrated the

댓글 없음: