CHAPTER VIII.
GENERAL PROCESSES FOR THE PRESERVATION OF OBJECTS OF NORMAL ANATOMY, PATHOLOGICAL ANATOMY, AND OF NATURAL HISTORY.
EMBALMING.
A portion of my researches has been submitted to the examination of commissioners, appointed by the Institute, and by the Academy of Medicine.
After long and repeated experiments, MM. the commissioners, have been unanimous upon the utility of the processes of preservation which I propose, and in particular my process for the preservation of subjects for the amphitheatres, the only one for which it was important for me to obtain a definite sanction, recommended by the Institute, is applied to the dissecting rooms of Clamart, with a success that every one may witness.
The faithful and complete exposition of the numerous trials which I have attempted, will furnish me, in this chapter, the occasion of indicating the most efficacious means of preservation for objects of pathological anatomy and of natural history. And, as it is incumbent on a man of study, disinterested in all that concerns science, I will give publicity to the result of my labours, the composition of the different liquids, and the mode of using them.
As for my process of embalming, I have thought that it ought to remain my property, and that one exclusively addicted to chemical studies was more qualified than the physician to subject it to those modifications which each particular case requires.
I have secured a patent of invention; for my method differs essentially enough from the preparations which I indicate for the purposes of anatomy.
It is necessary, in effect, to preserve to the tissues in embalming, a freshness and suppleness which is lost by desiccation, at the end of some months, in the subjects injected for the use of the anatomist; it is necessary, above all, to secure to the body, in this latter case, a more prolonged preservation: the facts which I can show, will prove that I have attained my end.
1.--_Preservation of bodies for dissection._
My experiments upon gelatine have conducted me to the knowledge of some one of the constituent parts of different animals. I had studied the action of chemical agents habitually employed in the arts; the labour of the tanner, or leather dresser, of the parchment maker, the fabrication of glue, which I have practised on a large scale from 1819 to 1828, have equally furnished me with valuable data.
In 1826, my attention having been arrested by MM. Begin and Serrulas, on the preservation of objects of pathological anatomy, trials were made at the Val-de-Grace.
In 1828, M. Alphonse Sanson, disposing himself to prepare a cabinet of anatomy, at the request and for the use of some English gentlemen, proposed to me to occupy myself with the question relative to preservation, which obliged me to make some researches; but it was not until 1831, and at the solicitation of M. Strauss, an anatomist of well known merit, that I undertook serious and continued labours upon the preservation of bodies. From this moment, I employed all my attention and cares to resolve this question.
The researches on the preservation of bodies demanded the re-union of different circumstances, without which it would have been impossible for me to have attained a satisfactory solution. It is easy to conceive, in effect, the great difference which ought to exist between the action of any given liquid upon some scruples of animal matter, and its action on an entire corpse; I ought to confess, also, that without the extreme courtesy of M. Orfila, who placed at my disposition, at the practical school of the faculty of medicine, all the objects of which I might stand in need, it is probable that it would have been impossible for me to have arrived at positive results. I encountered some difficulties, some resistance, and even something more, on the part of some scientific notables, and also of some ambitious subalterns; but I have surmounted all.
This work on the preservation of bodies ought only to be considered as the suit of that in which I have treated of the preservation of alimentary meats. It is only the circumstances of which I have just spoken, that have determined me to finish this work sooner.
It is well known that the study of medicine should be preceded by the study of anatomy, which teaches the knowledge of the organization of the human body; but this study is difficult and presents numerous dangers. The study of the organs exacts time; their dissection is tedious, especially if intended for demonstration. In this case it almost always happens that putrefaction seizes the subject before the preparation is finished; for, at a temperature above fifteen degrees, it is impossible to preserve a subject more than six days; under this temperature, that is to say, from 0 to 10 degrees, the longest time one can dissect is twelve or fifteen days. But the corpse always exhales mephitic miasmata before all the organs are putrefied, and this emanation of gas is certainly the cause which most frequently determines typhus fever, so destructive to a portion of our studious youths.[13]
[13] Out of ten medical students lodging together, and frequently of the same amphitheatre, nine were attacked by this grave malady in the course of last year, and three of them died.
Before exposing my own researches upon the preservation of bodies, it was necessary to examine the researches anterior to mine; it will have been perceived by what precedes, that they were of no service to me.
Thus, in viewing all that has been effected on this matter, I can find no indications excepting the processes employed in the arts.
In our works of chemistry applied to the arts, I have often been able to prove, practically, that muscular flesh, perfectly isolated, easily dries. When it is mixed with gelatine, it easily experiences, on the contrary, putrid fermentation. Geline[14] is the animal matter, which, all circumstances being equal, putrefies the easiest; and which, forming the organs of animals, experiences an alteration more or less prompt, according to the prevalence of a greater or less quantity of water of composition present. Always, then, when we succeed in preserving from putrefaction this animal part, the other parts will be disposed to desiccation. My researches have conducted me to this conclusion.
[14] Up to the present, certain animal substances have been considered chemically identical, which are not so: 1, the proper matter of gelatinous tissues not decomposed; 2, the product which results from their decomposition by the action of heat and water; 3, this same secondary product dried. These three compounds were designated by the denomination of gelatine. As I have proved that there is not between them any identity of character, I have named gelatine the animal matter contained in the gelatinous tissues; I have reserved the name jelly to the product of the decomposition of geline, and I have left the name gelatine to glue, whatever may be its purity.
In order to find a method of preserving bodies, and animal matters in general, it was essential to examine the action of chemical substances to which may be attributed properties which produce upon the constituent parts of these matters an immediate action; it is necessary also, that they should be easily procured, and that they be of a moderate price. I am satisfied that acids do not preserve animal matters; they disorganize them more or less promptly, in direct proportion to their concentration. Many weak acids, among others hydrochloric acid, at five degrees, may be employed to dissolve the calcareous salts from the bones; nitric acid also, at five degrees, may be brought into use in some particular cases; for example, when it is wished to study the nervous system; but then the bones are softened, the geline is in part disorganized, the muscles are discolored, and become flabby, as well as the viscera; the nerves only remain of a pearly blue, strongly pronounced.
Arsenic acid has a very marked action on animal matters; I shall make it known without delay in my second memoir upon gelatine. It preserves bodies well, but appears to favour their desiccation. In the details of experiments made under the surveillance of the commissioners of the two academies, I shall cite the effects produced by the employment of this substance. Acetic acid preserves flesh only by drying it. This acid weakened, or vinegar, retards putrefaction, softens the bones, as well as the muscles, which are discolored by its action.
Concentrated lies dissolve all animal matters; weak alkaline solutions disorganize more or less promptly the same substances.
A very small quantity of alkali suffices, when warm, to decompose very large masses of glue. This effect is often produced through ignorance in the manufacture of strong glue.
Salts only preserve meats when employed dry, or in very concentrated solutions; it is necessary that their affinity should be sufficiently great to absorb all the water of combination of animal matters. It may be then affirmed that salt only preserves meat by drying it; thus those salts more soluble in warm than in cold water; may, when injected warm, in a saturated solution, be considered as a good means of preservation, but which cannot be employed for anatomical purposes, because of the crystals which form in the organs during the cooling of the injected liquor.
Salts with a metallic oxide base have in general little affinity for geline, and do not preserve well; those which are poisonous being alone excepted. The salts of copper, and above all those of mercury hinder putrefaction; but many causes are opposed to their employment.
1. Their action is not sufficiently energetic to give them the preference: 2. They are always dangerous when employed in large quantities. 3. They are very injurious to dissecting instruments. 4. In fine they are too costly.
The aluminous salts are those alone which I find possessed of the property of preserving animal matters; their bases combine with geline to form a particular compound, the acid being set free.
The vegetable kingdom furnishes but few products capable of preventing or retarding putrefaction; alcohol is nearly the only substance possessing the property. It preserves in the same manner as the salts, by imbibing a portion of the water of composition; it bleaches, discolours, and hardens the organs. Alcohol is the only substance employed up to the present for preservation; but its action upon the tissues, its extreme volatility, the difficulty of transporting it, and its extreme dearness, makes another process desirable.
Tannin cannot be employed, because water does not contain enough of it in solution to render an injection of it preservative; a corpse immerged, even in a great mass of tannin, is no better preserved, the skin is tanned, but the flesh decomposes.[O]
[O] Entire bodies of both men and horses have been found not unfrequently, preserved for centuries in the English bogs--which preservation has always been referred to the tannin in its fluid portion. These instances probably occurred at a low temperature. I have tried the experiment by immersing small quadrupeds in a saturated solution of powdered nut-galls, during warm weather, but always found it insufficient for preservation from putrefaction.--_Tr._
Gallic acid acts in the same manner, but yet more feebly than tannin.
An oily, volatile, and very odorous substance, recently discovered, and to which the name _Creosote_, has been given, has been presented as a universal panacea, which, among other properties, ought to possess that of well preserving bodies. In order to assure myself of the truth of this assertion, on the 18th October, 1835, I injected a subject with one hundred scruples of creosote, dissolved in seven quarts water. On the 23d, the abdomen was very much swollen, and of a very strongly pronounced blue-green colour; on the 26th, the left side of the face, the right arm, and all of the left leg, were green; on the 30th of October, putrefaction was so much developed that it became necessary to bury the body. It may be objected, that the subject should have been at the same time steeped in a bath saturated with this substance; but its high price discouraged me from making such an experiment; besides I think that the odour of the creosote will always prove an obstacle to its employment.
Alum, the acid sulphate of alumine, and of potash, have given me the first good results; but, slightly soluble when cold, they will not suffice when the atmospherical temperature rises above fifteen degrees, (cent.) A mixture of alum, of chloride of sodium, (common salt,) and of nitrate of potash, has succeeded better with me. I have tried the action of sulphate of soda, of chloride of calcium, (muriate of lime,) of hydrochlorate of ammonia, &c.; they were almost useless.
The mixture of two parts of alum, of two parts of salt, and of one part of nitre, in a sufficient quantity of water to mark the liquor at ten degrees, injected, preserves bodies very well bathed in the same liquor, but only when the temperature is under ten degrees for a more elevated temperature it is necessary to warm the liquid, and add the salt mixture until the areometer marks twenty-five or thirty degrees.
Of all the saline substances which have given me satisfactory results, the aluminous deliquescent salts are to be preferred. The acetate and chloride of alumine have perfectly succeeded with me. In fine, a mixture of equal parts, of chloride of alumine at twenty degrees, and of the acetate of alumine at ten degrees, may be considered, employed in injection, as a good method which we now possess for the preservation of bodies.
Now that I have explained the action of chemical agents upon animal matters, I shall enter upon the details of experiments.
I presented my work to the Institute on the fourth of March, 1833. The Academy of Sciences named for its examination, a commission composed of MM. Savart, Flourens, Chevreuil, and Serres, reporter. A few days after, M. Serres placed at my disposition, at the Hospital La Pitie, and in his private cabinet, a corpse, which I bathed in a tub containing a solution at ten degrees, two parts of alum, two parts of common salt, and one part of nitre. This subject, repeatedly examined, appeared to be well preserved. At the end of about six weeks it was opened; the flesh and the viscera were in a good state of preservation, but particular circumstances put an end to this examination.
On the twelfth of November, 1834, the administration of Hospitals presented two subjects to me, which M. Orfila authorized me to place in one of the grand pavilions of the practical school of the faculty of medicine. These two subjects were bathed in a liquid of ten degrees. The second of December the commission of the Academy of Sciences came to examine these two subjects, which were consigned to dissection. On the same day another subject was given to me. This was injected with eight quarts of the saline solution at ten degrees. At the end of December, these three subjects were in a good state of preservation; it was remarked, however, that the skin as well as the flesh, had slightly assumed a decayed consistence and colour; the deep organs, which had not been in immediate contact with the liquid, remained almost natural. From this period until the end of April, the commission frequently assembled and confirmed these results.
A commission constituted by the Academy of Medicine early in March, examined these same subjects, and demanded new experiments. The first subject was injected with coloured fat, and then bathed. The corpse injected on the second of December, was also injected with coloured fat.
Here it may be remarked that it required double the quantity of fatty matter for this, than for a fresh subject, and that the most delicate arterial net-work had been prepared by the injection.
These experiments, which lasted for half the month of May, satisfied me that an injection of ten or twelve degrees of density, and immersion of the body in a bath of the same liquid, will suffice for a preparation destined for ordinary anatomical purposes, and will allow of dissection after several months.
At the end of July, 1835, M. Orfila, placed at my disposition in one of the grand pavilions of the practical school, all the utensils and instruments that I might stand in need of; on the 7th of August, I injected a subject with the liquid at 12 degrees, and afterwards bathed it in the same liquid. The body, at the end of two days, began to swell. Eight days after, it disengaged so large a portion of gas, that I was obliged to withdraw it from the trough, at the bottom of which it was no longer possible to retain it. Placed upon a table, its decomposition appeared to be arrested, no more gas being disengaged, but there escaped a great quantity of liquor coloured by the blood; the subject, which had assumed a deep brown colour, became completely dried. During all this time, no putrid odour was remarked; it was that of smoked ham.
A second subject was injected with the same liquid and abandoned on a table; it was decomposed at the end of five days; but it must be remarked that the atmospherical temperature varied from twenty to thirty degrees.
On the 8th of August, a subject was injected with the liquid at thirty degrees of density, which was made necessary by the elevation of the temperature up to fifty degrees. This corpse was well preserved and was dissected about the end of December.
These various experiments convinced me that the saline solutions employed with success during the winter, were insufficient for the operations during summer; that is to say, at a temperature above fifteen degrees.
The success which I obtained by the injection of a more concentrated liquid, indicated the route I was to follow.
I have already stated that the alum was decomposed, that the animal matter, the geline, combined with the alumine, and that the liberated sulphuric acid produced the alteration of the tissues. It was then indispensable to seek an aluminous salt, containing more of the base and a less powerful acid.
On the 16th of August, I injected a subject with eight quarts of acetate of alumine at twenty degrees. This corpse, placed upon the table without any other preparation, was preserved perfectly well for the period of one month; at the end of this period, it might be perceived that the nostrils, the eyelids, and the extremities of the ears, commenced drying, as well as the hands and feet. In order to remedy this inconvenience, I covered one half the subject with a layer of varnish. At the end of two months, it was easy to remark, that the part subjected to the action of the air had considerably diminished in volume, and was less useful for dissection. Finally, at the end of January, 1836, the varnished parts, not dissected, were still well preserved, whilst the rest was completely dried, mummified.
Dr. Piory had indicated to the Academy of Medicine a method of preserving bodies: it consisted, according to him, in enveloping the body in layers of pewter, and of linen, and then of varnish. This process perfectly succeeded with me on a subject injected with acetate of alumine.
Another subject was injected with the chloride of aluminium. This injection did not succeed well, and with three bodies I met with the same difficulties, that is to say, the liquid contained in the syringe having been introduced after the space of time allowed for refilling it, the circulatory system had become so obliterated that the force of even two men was not sufficient to introduce an additional quantity. At twenty degrees the chloride of aluminium has so great an affinity for water, that it absorbs that of which the organs are constituted. However, the parts of the body which had been penetrated by the liquid were well preserved, the muscles in particular had preserved their colour.
I injected another subject with the chloride at eight degrees, but, at the end of a month, it was decomposed. Finally, I introduced a quart of chloride at ten degrees, and six quarts at twenty degrees; this subject was preserved, but the parts not dissected were dried at the end of five months.
A mixture of three quarts of the acetate of alumine at ten degrees, and of three quarts of the chloride of aluminium at twenty degrees, injected by the aorta, or better still, by the carotid artery, have afforded the most satisfactory results.
I have already remarked that all these experiments were made under the inspection of the commission appointed by the Academy of Sciences, of those of the Academy of Medicine, and of the Monthyon commission, composed of MM. Dulong, Magendie, Darcet, and Dumas, reporter. The account which these commissioners have rendered to the two Academies, renders it unnecessary to present here a summary of my experiments.
These gentlemen requested me to repeat the experiments of Doctor Tranchini, of Naples, which consists in injecting a solution of two pounds of arsenic in twenty pounds of clear water, or better, in spirits of wine.[15] During eight days the corpse remained perfectly natural; but after this time it gradually dried, although deposited in a damp situation, and along side of a water cock, kept running.
[15] Arsenic is so little soluble, even in warm water, and, above all, in alcohol, that I introduced the liquid saturated, holding in suspension more than one-half of the powder which could not be dissolved.
It was injected on the ninth of September, and examined on the twenty-fifth of the same month; but, on the same day, having offered it to several students for dissection, none of them were willing to accept of my proposition.
On the sixteenth of October, it was found unfit for any anatomical purposes; on the thirtieth it was completely dried.
I think that the employment of this method presents real dangers for the anatomist, of which the following is a proof: Doctor Poirson declared before the Academy of Medicine, that he had been exceedingly incommoded, as well as two of his colleagues, in having embalmed two generals with this substance; he attributed this derangement of his health to the arsenic absorbed during the preparation.
I drew the attention of the commissioners to the fact, that the table upon which the body lay, that the windows of the room, and that the corpse itself, were covered with dead flies; a considerable mass of them was observed on the opening made in the sternum. I thought that this effect might be attributed to the evolution of arsenical hydrogen; this evolution is, at least, probable, and the action of this gas on the animal economy can well be conceived.
Finally, when we reflect that there are always more than eighty bodies under dissection at the Practical School, and that, consequently, it would demand one hundred and sixty pounds of arsenic to be put at the disposition of each student, it will readily be conceded that this process would not be applicable.[P]
[P] In the autumn of 1837 I tried this experiment of Tranchini, on the body of a patient who had died the day before with consumption, in the wards of the Philadelphia Hospital. A saturated solution of spirits of wine and arsenic, coloured with carmine, was injected into the carotid artery--the countenance regained its natural fulness and complexion, which state continued for about three weeks, with the exception of some shrinking of the eyes. In about six weeks the corpse began to mould, and the skin of the legs could be scraped off,--the body was then buried.--_Tr._
At this period of my labour, I had already proved that the methods by which I had obtained favourable results in principle, became insufficient when exterior circumstances changed; that the salt, of alumine, which I made use of in my injections, was not sufficiently rich in alumine; that the preservation was not certain above a certain degree of temperature; finally, I had found in the acetate of alumine a suitable matter for forming injections eminently preservative.
It was then that the reports were read to the Institute and Academy of Medicine. I cite them because they prove, in an authentic manner, the point which I have attained. It was already possible, with these data, to dissect during all seasons, without fearing henceforwards the dangers attached to this employment during the heat of the weather.
INSTITUTE OF FRANCE.--_Academy of Sciences_--_Public sitting of Monday, 28th of December, 1835_--_Prize relative to the means of rendering an art or a trade less unhealthy_--_On the preservation of dead bodies, by_ M. Gannal.
Your commission has followed with interest the experiments of M. Gannal; it has availed itself of the experience of those of our confreres whose studies oblige them to practise daily dissections, and it believes itself authorized to declare to the Academy, that the means pointed out in the first place by M. Gannal, and that, which is still better, the simple injections of acetate of alumine, at ten degrees of the areometer, which he practised at a later period, answers for preserving bodies for several months, even during the summer. It is assured that no inconvenience results from it in dissections.
Your commission has thought it proper to wait until this process should be regularly practised in some amphitheatre of considerable extent, before pronouncing on it in a definitive manner. It is aware how difficult it is to introduce the most simple improvement into routine operations, because, against the employment of them there arises numerous unforeseen obstacles.
It remains convinced, however, that this process may render, even now, real services in all countries where dissection meets with difficulties, either from the scarcity of bodies, or from the prejudices of the populace.
Taking this circumstance into consideration, together with the obstacles which M. Gannal has encountered, the disgusts which he has had to surmount, in order to complete the experiments which he has made, your commission has the honour to propose to you to award to him, in anticipation, an encouragement of three thousand francs, (six hundred dollars.)
_Report of a Commission appointed by the Academy of Medicine, and composed of MM. Sanson, Roux, Dize, Gueneau de Mussy, Breschet, reporter, to examine a process for the preservation of dead bodies, discovered and proposed by_ M. J. N. Gannal, _chemist_.
MESSIEURS,--If anatomy is the basis of all sound medical study, if almost all those who have most contributed to the progress of medicine and surgery have been skilful anatomists, it is rendering a great service to those same sciences and to humanity, to discover a method of facilitating the study of anatomy, and obviating its insalubrity. Well, gentlemen, it is a discovery of this kind that M. Gannal presumes he has made.
By a letter dated on the 10th of March, 1835, addressed to the Academy of Medicine, by M. the Minister of Commerce, this learned body is charged to make known to superior authority its opinion of the real merit of the process of M. Gannal, for the preservation of dead bodies.
In consequence, the Academy has appointed a commission composed of MM. Sanson, Roux, Dize, Gueneau de Mussy, and Breschet; it is in the name of this commission that I now present myself to make known to you the result of our labours.
Already two commissions from the Academy of Sciences have been occupied in the examination of this discovery of M. Gannal; the one, considering the process as useful to the study of the sciences which concerns the composition of organized beings; the other, considering it as a means of rendering less insalubrious an art or a profession, a prize having been founded for this purpose by M. de Monthyon, whose name will remain eternally dear to science and to philanthropy.
The reasons which have hindered the ancients from carrying to any great length a knowledge of the structure of man and animals, was not only the idea of filthiness attached to the sight and dissection of dead bodies, or the difficulty of procuring the means of dissection; but rather the almost absolute impossibility of preserving dead bodies in part or entire, which has retarded the progress of anatomy. Aristotle, to whom Philip of Macedon had given every facility for the dissection of animals, and who must have made collections, does not say, in any of his known works, how he preserved the animals which he did not immediately examine, and Galien, in his anatomical administrations, says very few words of the means of preservation in liquors.
Cuvier, in giving the history of the progress of the natural sciences, teaches us that one of the circumstances which has the most contributed to the advancement of these sciences was the discovery of alcohol.
We are, however, astonished at the novelty of our means for the preservation of animals, for zoological and anatomical collections, when we reflect that during the time of Reaumur the art of preserving animal bodies with their natural forms and colours, was not known. Thus, in the cabinet of this celebrated naturalist, are seen birds skinned and suspended by the beak with a thread.
The taxidermic processes have almost all originated among us, for the formation of zoological collections; but we still are in want of less expensive methods, of easy transport, and in small space in order to preserve animals destined to serve for the researches of comparative anatomy, or for the study of the anatomy of man.
Peron, in the relation of his voyage to Terra Australis, in the commencement of the present century, laments the embarrassment of zoologists in long voyages, in preserving animals, without altering any of their zoological characters, and in a manner that they may serve finally for anatomical researches. He says, that it would be rendering great service to natural history and zoology, if the following problem could be resolved:
“Any species of animal being given, to preserve it the most certainly, the most perfectly, and with the smallest quantity of an alcoholic liquid of the least possible strength.”
Alcohol is very costly in this country, where considerable duties are exacted, nor is it suitable for preserving bodies, except of small volume. During voyages, this liquor is difficult of export, evaporates rapidly, particularly in equatorial regions, and often bursting the vessels which contain it; it alters or dissolves the resins or resinous mastic which is used to seal the jars or other vessels which contain the animals.
If an acid be added to alcohol, the bones are acted upon, and softened; colours are destroyed; the scalpels and other dissecting instruments are promptly oxidised, when it is desirable to dissect animals preserved in these liquors.
The same inconveniences exist if alcohol holds arsenic in solution, or corrosive sublimate, and many other metallic salts.
The essence of turpentine can only serve for small pieces; it is not easily transported, alters several of the tissues, becomes thick and clouded.
The oils are suitable only for the preservation of some fishes; their acquisition is expensive, and it is difficult to obtain them everywhere.
The syrups which have been proposed for the preservation of some animal parts, such as the brain, spinal marrow, &c., are too dear to be useful to any great extent; besides, they do not penetrate the tissues profoundly, preserve only the external surfaces, deposit crystals or a viscous matter which changes the colour; and, finally, they run readily into fermentation, especially in hot climates.
Creosote, advised of late, for the preservation of the nerves and brain, is too costly, but, as we have not made use of it, we cannot describe its mode of action upon the tissues.
Sea-salt, employed alone and in solution, has a mode of action for a long time known, and its inefficiency cannot be disputed; we do not speak however, of saltings, because this method cannot answer for the preservation of bodies for dissection; or for preserving animals from putrefaction, that they may be subsequently dissected, or be placed in zoological collections.
In an English Medical Journal, for the year 1818, we find, that it is proposed to replace alcohol by _rock-salt_, for the preservation of anatomical and natural history subjects, which is known to be nothing more than muriate of soda, purer than that of commerce; this proposition is inadmissible.
The chlorides of the oxides of calcium of sodium, of potassium, have been recommended for some pieces of pathological anatomy; but they are not applicable for the preservation of thick objects, and much less entire subjects.
Wine to which has been added a nitrous solution of mercury, has been employed by some navigators, for the preservation of small zoological collections; its use cannot be employed extensively. Acids, more or less diluted, alter the tissues, and attack the dissecting instruments.
Aqueous or alcoholic solutions of the salts of mercury, arsenical solutions, &c., are dangerous, by their emanations, for the anatomist who constantly handles the objects impregnated with these metallic salts; and further they harden the tissues, contract them, destroy their colours, and attack anatomical instruments.
We may repeat of the pyroligneous and acetic acids, what we have already advanced of the other acids. Nevertheless, it was proposed about fifteen years ago, to use the pyroligneous acid, as excelling in its properties for preserving animals, and anatomical subjects.
All acids, not excepting vinegar, attack the colour of organic tissues, corrode them, and deprive the bones of their earthy salts, rendering them flexible and transparent, and cover the soft parts with a layer of gluey matter which conceals the fibres and the structure of the parts. It is known that alum and nitre are employed separately in aqueous solution, to preserve anatomical preparations, during the time of their fabrication. It is known that anatomists employ nitre, or simply saltpetre of commerce, not only to preserve the fleshy tissues,[Q] but to give a lively red colour to the flesh.
[Q] Nitre possesses no preservative properties.--_Tr._
We have thus, gentlemen, in a cursory manner, exposed the ordinary methods proposed or employed for the preservation of animal matters.
In order to respond to the Academy upon the merits of the discovery of M. Gannal, we will say that his process consists of an aqueous solution of three salts, already employed separately in the anatomical laboratory, _nitre_, _common salt_, _and alum_.
We have caused to be repeated under our inspection the experiments of M. Gannal. In the course of last March, two bodies were placed in a bathing tub six feet six inches long, sixteen inches wide, and twenty inches high. A liquor was poured upon these bodies, composed of acid sulphate of alumine, and of potash, of the chloride of sodium of each two parts, and one part of nitrate of potash.
The water which contains these salts in solution was in sufficient quantity to cause the liquor to stand at fifteen degrees of the areometer; that is to say, and according to the indication of M. Gannal, that the liquid should mark from seven to eight degrees during winter, and from twelve to fifteen during summer.
The tub was placed in one of the pavilions of the Practical School; and in the same room there were a great number of tables covered with dead bodies for the study of practical anatomy. At the end of two months, the two bodies were withdrawn from the bath, and dissected; no change had taken place in their exterior aspect; the tissues and internal organs were ascertained to be well preserved, and capable of serving for anatomical demonstrations.
Other subjects have been examined by the commission of the Academy of Sciences; they had remained in the same liquor since the 2d of December, 1834, and were still sound at the end of April, 1835.
We thought it our duty to exact of M. Gannal some other experiments; thus, we desired to see injections with this preservative liquor, of the arterial system; we caused another subject to be injected with ordinary fatty matter; and at a later period we had injected into the vessels of the subject which had received the preservative liquor, a matter composed of suet, and of resin, in equal parts, and coloured with cinabar, (sulphate of mercury.) This last injection was successful. The first injection of saline liquid exacted eight quarts of the liquid, which was introduced through the left ventricle of the heart.
The subject examined at the end of two months, was well preserved, did not exhale any fetid odour, and might serve for the common dissection of students.
The commission were desirous to know whether a body would rapidly putrefy, if it were withdrawn from the tub and left upon the table of the amphitheatre, exposed to the air, and to the influence of the putrid emanations from the other bodies. A subject was accordingly withdrawn from the preservative saline liquor, and remained fifteen days exposed to the air; no sensible putrefaction took place during this time; this was during the last fifteen days of April. The muscles of the corpse were seen to dry, and, so to speak, to mummify, whilst the tissues which had not come in contact with the saline liquid, or which had not been uncovered and exposed to the air, remained still in a state which permitted an anatomical analysis.
We ought to remark, that the tissues which are bathed by the liquid lose their natural colours; but the more deeply disposed organs did not experience the same change; there was no emphysema in the cellular tissue, although we thought we remarked that there was less resistance in the fibres of the organs, than in a subject dead for twenty-four or forty-eight hours.
We may remark, that under no circumstances were long and deep scarifications made on the trunk or members, in order to allow the liquid to penetrate the thickness of the tissues. The cranium itself was not opened, nor was there any application of the trephine, in order to permit a more ready entrance of the liquor to the meninges, or to the brain itself. Nevertheless, after more than two months immersion in the liquor, the brain, extracted from the cranium, if it could no longer serve for new researches on its structure, might have been employed for demonstrations.
But, for how much longer time could this preservation be continued? What temperature is it capable of resisting? And what expense does it require? In fine, can the discovery be extensively applied? That is to say, is it possible, by this process, to preserve a great number of subjects during summer, to deliver them later to the students during the season of dissection? And if these subjects, thus preserved, exhale no odour, become in no manner a cause of insalubrity, or of danger to the students, for the anatomists themselves, or for the persons who inhabit the houses adjoining the anatomical amphitheatre, might not the dissections be indefinitely prolonged, in place of permitting them only during the rigors of winter?
In fine, has this saline liquor of M. Gannal preservative properties sufficiently pronounced to be employed during long voyages, and in hot climates, for the purpose of bringing home numerous animals of large size, to serve for the study of comparative anatomy?
The small volume which saline substances occupy, and the sea water, which might serve to make the solution of the salts in any quantity as soon as needed, would be circumstances favourable to the use of this process.
In order to answer all these questions, it would be requisite to multiply the experiments, to extend them during a much longer period, and upon a very great number of subjects.
These experiments, directed in this spirit, would exact expenses which we thought ought not to be imposed upon the author of the process for the preservation of dead bodies, who has already been subjected to a multiplicity of demands, for the reimbursement of which we propose an indemnity from the Academy, without prejudice to the recompense which M. Gannal may have a right to claim, when the experiments shall have received that extension which we wish to be able to give them.
However this may be, we thought, in this provisionary report, that we ought to call the attention of the Academy, and of superior authority, to the process of preservation discovered by M. Gannal, and we manifest the desire that a sum be awarded to him as an indemnification for expenses already accrued, and in order to facilitate the means of continuing his experiments on a large scale.
We shall add that this process of preservation may be very advantageously applied to various cases of legal medicine.
_Paris, 16th June, 1835._
Signed, MM. Gueneau de Mussy, Dize, Roux, Sanson, Breschet, Reporter.
_Certified._--The perpetual Secretary of the Academy of Medicine.
Signed, Pariset.
The first report of MM. the members of the commission named by the Academy of Medicine was only provisionary; new facts were discovered to enlighten the conscience of the judges; these facts were presented, and the following report read to the Academy by M. Dize.
_Definitive report of the commission named by the Academy of Medicine, to examine the process of preserving dead bodies, presented by_ M. Gannal.
GENTLEMEN,--The Academy had formed a commission composed of MM. Sanson, Gueneau de Mussy, Breschet, Roux, and Dize, to make known the results of a process presented by M. Gannal, having for its object the preservation of dead bodies destined for dissection.
Our honourable colleague, M. Breschet, presented, in a provisionary report, the experiments which had been made, and the success obtained by M. Gannal.
But the commission having expressed a desire to give more development to trials which, after the important results already obtained, deserved to fix the attention of the Academy, it proposed to him to multiply, to vary the experiments, to extend them a longer time upon a greater number of subjects.
But trials directed in this spirit, exact expenses; the commission did not think it just to impose them upon the author of the process, who had already multiplied expenses; in consequence it proposed to the Academy to demand an indemnity of government for expenses already made, and for the continuance of experiments, without any prejudice to the recompense that M. Gannal would have a right to claim.
The Academy seconded the wishes of the commission; it obtained from the minister of public instruction the sum necessary for covering all expenses made, and for those to be made in the continuance of the experiments.
M Gannal made a series of preliminary experiments, which served him as so many starting points on the road to the discovery of the means of preserving animal matters; these labours subsequently conducted to the research of an antiseptic sufficiently powerful, which unites to the property of preserving bodies, that of not altering the organic tissues, and not too much weakening their natural colours, so important to anatomical demonstrations.
We shall cite the most important experiments, so that you may be able to appreciate the process which is proposed.
In the first place, acids in general modify the consistence of animal matters; they produce disorganization in proportion to their concentration; some diluted acids, for example, nitric acid at five degrees, may serve when it is necessary to study the nervous system, but then the bones lose their saline particles and are reduced to their organic frame; the muscles are discolored and faded, as well as the viscera; the nerves alone remain of a very remarkable mother-of-pearl whiteness. |
|
댓글 없음:
댓글 쓰기