2014년 11월 30일 일요일

Louis Pasteur 2

Louis Pasteur 2


Of five unvaccinated dogs, all succumbed to inoculation, by trepanning,
of the brain.

Finally, of three-and-twenty vaccinated dogs, not one was attacked with
the disease subsequent to inoculation with the most potent virus.

Surely results such as those recorded in this book are calculated,
not only to arouse public interest, but public hope and wonder. Never
before, during the long period of its history, did a day like the
present dawn upon the science and art of medicine. Indeed, previous
to the discoveries of recent times, medicine was not a science, but
a collection of empirical rules dependent for their interpretation
and application upon the sagacity of the physician. How does England
stand in relation to the great work now going on around her? She is,
and must be, behindhand. Scientific chauvinism is not beautiful in my
eyes. Still one can hardly see, without deprecation and protest, the
English investigator handicapped in so great a race by short-sighted
and mischievous legislation.

A great scientific theory has never been accepted without opposition.
The theory of gravitation, the theory of undulation, the theory of
evolution, the dynamical theory of heat--all had to push their way
through conflict to victory. And so it has been with the Germ Theory of
communicable diseases. Some outlying members of the medical profession
dispute it still. I am told they even dispute the communicability of
cholera. Such must always be the course of things, as long as men are
endowed with different degrees of insight. Where the mind of genius
discerns the distant truth, which it pursues, the mind not so gifted
often discerns nothing but the extravagance, which it avoids. Names,
not yet forgotten, could be given to illustrate these two classes of
minds. As representative of the first class, I would name a man whom
I have often named before, who, basing himself in great part on the
researches of Pasteur, fought, in England, the battle of the germ
theory with persistent valour, but whose labours broke him down before
he saw the triumph which he _fore_saw completed. Many of my medical
friends will understand that I allude here to the late Dr. William
Budd, of Bristol.

The task expected of me is now accomplished, and the reader is here
presented with a record, in which the verities of science are endowed
with the interest of romance.

                                                  JOHN TYNDALL.

  ROYAL INSTITUTION: _December 1884_

FOOTNOTES:

[2] Art. 'Vitality,' _Fragments of Science_, 6th edit., vol. ii. p. 50.

[3] In Faraday's _induced_ dissymmetry the ray, having once passed
through the body under magnetic influence, has its rotation doubled,
instead of neutralised, as in the case of quartz, on being reflected
back through the body. Marbach has discovered that chlorate of soda
produces circular polarisation in all directions through the crystal,
while in quartz it occurs only in the direction of the axis. Marbach
also discovered facets upon his crystals, resembling those of quartz.

[4] It was late in the day when the Royal Society made him a foreign
member.

[5] These words were uttered at a time when the pythogenic theory was
more in favour than it is now.

[6] The work on _Diseases of Silkworms_ was dedicated to the Empress of
the French.




                _RECOLLECTIONS OF CHILDHOOD AND YOUTH._

                          FIRST DISCOVERIES.


'Come, M. Pasteur! you must shake off the demon of idleness!' It was
the night watcher of the College of Besancon, who invariably at four
o'clock in the morning entered Pasteur's room and roused him with this
vigorous salute, which was accompanied, when necessary, by a sound
shaking. Pasteur was then eighteen years of age. In addition to his
food and lodging, the royal college paid him twenty-four francs a
month. But if his place was a modest one, it sufficed at the time for
his ambition: it was the first tie which bound him to the University.

'Ah,' said his father to him frequently, 'if only you could become some
day professor in the College of Arbois I should be the happiest man on
earth.'

Already, when he resided at Dole, and when his son was not yet two
years old, this father permitted himself to dream thus of the future.
What would he have said had it been announced to him that fifty-eight
years later, on the facade of the little house in the Rue des Tanneurs,
would be placed, in the presence of his living son--laden with honours,
laden with glory, passing in the midst of a triumphal procession along
the paved town--a plate bearing these words in letters of gold:

                     HERE WAS BORN LOUIS PASTEUR,
                         _December 27, 1822._

Pausing before this house, Pasteur recalled the image of his father and
mother--of those whom he called his dear departed ones--and from the
far-off depths of his childhood came so many memories of affection,
devotion, and paternal sacrifices that he burst into tears.

The life of his father had been a rough one. An old soldier, decorated
on the field of battle, on returning to France, where he had no longer
a home, he was obliged to work hard to earn his bread. He took up the
trade of a tanner. Soon afterwards, having made the acquaintance of
a worthy young girl, he joined his lot with hers, and together they
entered courageously on the labours of their married life--he calm,
reflective, and more eager, whenever he had a moment of repose, for the
society of books than for the society of his neighbours; she full of
enthusiasm, her heart and spirit agitated by thoughts above the level
of her modest life. Both of them watched with ceaseless solitude over
their little Louis, of whom, with mingled pride and tenderness, they
used to say, 'We will make of him an educated man.'

In 1825 the Pasteur family quitted Dole and established themselves
at Arbois, where, on the borders of the Cuisance, the father of our
hero had bought a small tanyard. At this town, and in this yard,
Louis Pasteur spent his childhood. As soon as he was old enough to be
received as a half-pay scholar he was sent to the communal college. He,
the smallest of all the pupils, was so proud of passing under the great
arched doorway of this ancient establishment, that he arrived laden
with enormous dictionaries, of which there was no need.

In the midst of his laborious occupations the father of Pasteur took
upon himself the task of superintending his son's lessons every
evening. This was at first no sinecure. Louis Pasteur did not always
take the shortest road either to reach his class or to return to his
work at home. Some old friends still living remember having made with
the little Pasteur fishing parties, which proved so pleasant that they
have been continued to the present day. The boy, moreover, instead of
applying himself to his lessons, often escaped and amused himself by
making large portraits of his neighbours, male and female. A dozen of
these portraits are still to be seen in the houses of Arbois, all
bearing his signature. Considering that his age at the time was only
thirteen, the accuracy of the drawing is astonishing.

'What a pity,' said an old lady of Arbois a short time since, 'that he
should have buried himself in chemistry! He has missed his vocation,
for he might by this time have made his reputation as a painter.'

It was not until he reached the third class that Louis Pasteur,
beginning to realise the sacrifices which his father imposed upon
himself, determined to abandon his fishing implements and his crayons,
feeling aroused within him that passion for work which was to form the
foundation of his life. The Principal of the college, who followed with
watchful interest the progress of a pupil who, in his first effort, had
outstripped all his comrades, used to say, 'He will go far. It is not
for the chair of a small college like ours that we must prepare him; he
must become professor in a royal college. My little friend,' he would
add, 'think of the great Ecole Normale.'

The College of Arbois having no professor of philosophy, Pasteur
quitted it for Besancon. There he remained for the scholars' year,
received the degree of _bachelier es lettres_, and was immediately
appointed tutor in the same college. In the intervals of his duties
he followed the course of mathematics necessary to prepare him for
the scientific examinations of the Ecole Normale. He must have been
already endowed with a singular maturity of character, for the
director confided to him the superintendence of the quarters of the
older pupils, who during class time were his comrades. In the class
room his table was in the midst of them; and never had so young a
master so much authority, and at the same time so little need for its
exercise.

His first taste for chemistry manifested itself by frequent questions
addressed during class time to an old professor named Darlay. This
questioning was so often repeated that the good man, quite bewildered,
ended by declaring that it was for him to interrogate Pasteur and not
for Pasteur to interrogate him. His pupil pressed him no further, but
having heard that at Besancon there lived an apothecary who had once
distinguished himself by a paper inserted in the 'Annales de Chimie et
de Physique,' he sought this man, with a view of ascertaining whether,
on holidays, he would consent to give him lessons secretly.

At the examination for the Ecole Normale, Pasteur passed as fourteenth
in the list. This rank, however, did not satisfy him. Notwithstanding
the censure of his fellow candidates he declared that he would begin
a new year of preparation. It was in Paris itself that he chose to
work--in one of the silent corners of the city, amid the seclusion of
preparatory schools and convents.

In the Impasse des Feuillantines, there lived a schoolmaster, M.
Barbet by name, or rather _le pere Barbet_, as the Franc-Comtois,
with provincial familiarity, used to call him. Pasteur begged to be
allowed to enter his institution, not as an assistant, but as a simple
pupil. Knowing how slender were the means of his young compatriot, M.
Barbet reduced the fees of his pupil by one-third. Such kindness was
customary with the _pere Barbet_, who did not like to be reminded of
his generosity. This, however, gives double pleasure to him who records
it.

The year passes, the time of the examination arrives, and Pasteur is
received as fourth on the list. Thus at last, in the month of October
1843, he finds himself in that Ecole Normale in which he was destined
to take so great a place. Pasteur's taste for chemistry had become a
passion which he could now satisfy to his heart's content. Chemistry
was at this time taught at the Sorbonne by M. Dumas and at the Ecole
Normale by M. Balard. The pupils of the Ecole attended both courses of
lectures. Different as were the two professors, both of them exercised
great influence on their pupils. M. Dumas, with his serene gravity
and his profound respect for his auditory, never allowed the smallest
incorrectness to slip into his exposition. M. Balard, with a vivacity
quite juvenile, with the excitement of a southerner in the tribune, did
not always give his words time to follow his thoughts. It was he who
once, showing a little potash to his audience, exclaimed with a fervour
which has become celebrated, 'Potash, which--potash, then--potash, in
short, which I now present to you.'

The general principles which M. Dumas in his teaching delighted to
develop, the multitude of facts which M. Balard unfolded to his pupils,
all answered to the needs of Pasteur's mind. If he loved the vaster
horizons of science, he was also possessed by the anxious desire
for exactitude, and for the perpetual control of experiment. Each
of the lectures of the Ecole Normale and of the Sorbonne excited in
him a profound enthusiasm. One day M. Dumas, while illustrating the
solidification of carbonic acid, begged for the loan of a handkerchief
to receive the carbonic acid snow. Pasteur rushed forward, and,
presenting his handkerchief, received the snow. He returned triumphant,
and running forthwith to the Ecole Normale, repeated the principal
experiments which the illustrious chemist had just exhibited to his
audience. He preserved religiously the handkerchief which had been
touched by M. Dumas.

Pasteur usually spent his Sundays with M. Barruel, the assistant of M.
Dumas. He thought of nothing but experiments. For a long time in one of
the laboratories of the Ecole Normale was exhibited a basin--perhaps
it is still shown--containing sixty grammes of phosphorus obtained
from bones bought at the butcher's by Pasteur. These he had calcined,
submitted to the processes known to chemists, and finally reduced,
after a whole day's heating, from four in the morning to nine in the
evening, to the said sixty grammes. It was the first time that the long
manipulations required in the preparation of this simple substance were
attempted at the Ecole Normale.

Isolated in laboratory or library, Pasteur's only thought was to
search, to learn, to question, and to verify. As the rule of the school
leaves much to individual initiative, he devoted himself to his work
with a joyful heart. This daily liberty constitutes the charm and the
honour of the Ecole Normale. Not only does it permit but it encourages
individual effort; it allows the student to visit at his will the
library, and to consult there the scientific journals and reviews. This
free system of education develops singularly the spirit of research.
There is in it an element of superiority over the Ecole Polytechnique.
Influenced by its military origin, constrained, moreover, by the number
of its pupils to impose on all an exact discipline, and to introduce
into their exercises a strict regularity, the Ecole Polytechnique is,
perhaps, less calculated than the Ecole Normale to awaken in the minds
of its pupils a taste for speculative science. It is certain that
Pasteur owed to the freedom of work, and to the facilities for solitary
reading which he there enjoyed, the first occasion for an investigation
which was the starting-point to a veritable discovery.


                                  I.

Unlike the old professor of physics and chemistry at Besancon, one
of the lecturers in the Ecole Normale often took pleasure, not only
in answering Pasteur's questions, but in leading him on to talk over
scientific subjects. M. Delafosse, whose memory remains dear to all
his pupils, was one of those men who fail to do themselves justice, or
who, according to the expression of Cardinal de Retz, do not fulfil
all their merit. Not that circumstances have been unfavourable to
them, but that an invincible modesty, and a natural nonchalance which
finds in that modesty a shield against latent self-reproach, leave
them in a sort of twilight in which they are content to dwell. Pupil,
and afterwards fellow worker, of the celebrated crystallographer Hauy,
M. Delafosse had devoted himself to questions of molecular physics.
Pasteur, who had read with enthusiasm the works of Hauy, conversed
incessantly with Delafosse about the arrangements of molecules, when an
unexpected note from the German chemist Mitscherlich, communicated to
the Academy of Sciences, came to trouble all his scientific beliefs.
Here is the note:--

'The paratartrate and the tartrate of soda and ammonia have the same
chemical composition, the same crystalline form, the same angles, the
same specific weight, the same double refraction, and consequently
the same inclination of the optic axes. Dissolved in water, their
refraction is the same. But while the dissolved tartrate causes the
plane of polarised light to rotate, the paratartrate exerts no such
action. M. Biot has found this to be the case with the whole series of
these two kinds of salts. Here (adds Mitscherlich) the nature and the
number of the atoms, their arrangement, and their distances apart are
the same in the two bodies.'

Imbued as he was with the teachings of Hauy and Delafosse, and full of
the ideas of M. Dumas in molecular chemistry, Pasteur asked himself
this question: 'How can it be admitted that the nature and number of
the atoms, their arrangement and distances apart, in two chemical
substances are the same; that the crystalline forms are equally the
same, without concluding that the two substances are absolutely
identical? Is there not a profound incompatibility between the identity
affirmed by Mitscherlich and the discrepancy of optic character
manifested by the two compounds, tartaric and paratartaric, which form
the subject of his note?'

This difficulty rested in Pasteur's mind with the tenacity of a fixed
idea. Received as _agrege_ of physical science at the end of his third
year at the Ecole, and then keeping near his master, M. Balard, he had
begun the study of crystals and the determination of their angles and
forms, when his nomination to the professorship of physics in the Lycee
of Tournon surprised and distressed him. M. Balard repaired immediately
to the bureau of the Minister of Education, and spoke of his assistant
in terms which caused the nomination to be cancelled. Pasteur remained
in the laboratory of the Ecole Normale.

With a view to mastering the science of crystallography, he took for
his guide the extensive work of M. de la Provostaye, resolving to
repeat all the measurements of angles and all the other determinations
of this author with a view to a comparison of their respective
results. The work of M. de la Provostaye, who was distinguished by the
exactitude of his researches, had for its subject the tartaric and
paratartaric acids and their saline compounds.

                   *       *       *       *       *

Two or three years ago, while we were walking together along a road in
the Jura, M. Pasteur, after quoting textually the note of Mitscherlich,
described to me with enthusiasm the pleasure he had experienced in
crystallising tartaric acid and its salts, the crystals of which, he
said, rivalled in size and beauty the most exquisite of crystalline
forms.

'I should have great difficulty,' I remarked, 'in following you through
the labyrinth of tartaric acid, tartrates, and paratartrates. However
much your other studies have attracted me, those which had for their
starting-point the note of Mitscherlich and the memoir of M. de la
Provostaye have appeared to me, whenever I tried to master them,
difficult of access. Ah,' I added, 'you would have done well, out of
consideration for those who love to speak of your labours, had you made
no discoveries in this field.'

Pasteur, with a mixture of indignation and indulgence, replied:--'Is it
possible that you have not discerned the grand horizons that lie behind
these researches in physics and molecular optics? If I have a regret,
it is that I did not follow out this path. Less rough than it at first
sight appears, it would, I am convinced, have led to the most important
discoveries. By a sudden turn it threw me unexpectedly upon the subject
of fermentation, and fermentation led me to the study of diseases; but
I still continue to lament that I have never had time to retrace my
steps.'

Then, with a simplicity of exposition in which one recognised the
teacher who had always endeavoured to place his ideas within the range
of his hearers, he said--

'If you picture to yourself all the bodies in nature--mineral, animal,
or vegetable, and consider even the objects formed by the hands of man,
you will see that they divide themselves into two great categories.
The one has a plane of symmetry and the other has not. Take, for
instance, a table, a chair, a playing die, or the human body; we can
imagine a plane passing through these objects which divides each of
them into two absolutely similar halves. Thus, a plane passing through
the middle of the seat and of the back of an arm-chair would have, on
its right and left, identical parts; in like manner a vertical plane
passing through the middle of the forehead, nose, mouth, and chin of
an individual, would have similar parts to the right and to the left.
All these objects, and a multitude of similar ones, constitute our
first category. They have, as mathematicians express it, one or several
planes of symmetry.

'But, as regards the repetition of similar parts, it is far from
being the case that all bodies are constituted in the manner here
described. Consider, for example, your right hand: it is impossible
to find for it a plane of symmetry. Whatever be the position of a
plane which you imagine cutting the hand, you will never find on the
right of this plane exactly the same as you find on its left. The same
remark applies to your left hand, to your right ear and to your left
ear, to your right eye and to your left eye; to your two arms, your
two legs, and your two feet. The human body, taken as a whole, has a
plane of symmetry, but none of the parts composing one or the other
of its halves has such a plane. The stalk of a plant whose leaves are
distributed spirally round its stem has not a plane of symmetry, nor
has a spiral staircase such a plane; but a straight one has. You see
this?

'It would have been truly extraordinary, would it not, if the various
kinds of minerals, such as sea salt, alum, the diamond, rock crystal,
and so many others which illustrate the great law of crystallisation,
and which clothe themselves in geometric forms, should not present to
us examples of the two categories of which we have just been speaking?
They do so in fact. Thus a cube, which has the form of a player's die,
has a plane of symmetry; it has indeed several planes. The form of
the diamond, which is a regular octahedron, has also several planes
of symmetry. It is thus also with the great majority of the mineral
forms met with in nature or in the laboratory. They have generally
one or several planes of symmetry. There are, however, exceptions.
Rock crystal, which is found in prisms, often of large volume, in the
fissures of certain primitive rocks, has no plane of symmetry. This
crystal exhibits certain small facets, distributed in such a manner
that in their totality they might be compared to a helix, or spiral, or
screw, which are all objects not possessing a plane of symmetry.

'Every object which has a plane of symmetry, when placed before a
looking-glass, has an image which is rigorously identical with the
object itself. The image can be superposed upon the reality. Place a
chair before a mirror; the image faithfully reproduces the chair. The
mirror also reproduces the human body considered as a whole. But place
before the mirror your right hand and you will see a left hand. The
right hand is not superposable on the left, just as the glove of your
right hand cannot be fitted to your left, and inversely.'

Then reverting to the beginnings of his studies in crystallography,
Pasteur recounted to me briefly that, after having gone through the
work of M. de la Provostaye, he perceived that a very interesting fact
had escaped the notice of this skilful physicist. M. de la Provostaye
had failed to observe that the crystalline forms of tartaric acid and
of its compounds all belong to the group of objects which have not a
plane of symmetry. Certain minute facets had escaped him. In other
words, Pasteur discerned that the crystalline form of tartaric acid,
placed before a mirror, produced an image which was not superposable
upon the crystal itself. The same was found to be true of the forms
of all the chemical compounds of this acid. On the other hand, he
imagined that the crystalline form of paratartaric acid, and of all the
compounds of this acid, would be found to form part of the group of
natural objects which have a plane of symmetry.

Pasteur was transported with joy by this double result. He saw in it
the possibility of reaching by experiment the explanation of the
difficulty which the note of Mitscherlich had thrown down as a kind of
challenge to science, when it signalised an optical difference between
two chemical compounds affirmed to be otherwise rigorously identical.
Pasteur reasoned thus:--Since I find tartaric acid and all its
tartrates without a plane of symmetry, while its isomer, paratartaric
acid, and its compounds have such a plane, I will hasten to prepare
the tartrate and the paratartrate of the note of Mitscherlich. I will
compare their forms, and in all probability the tartrate will be found
dissymmetrical--that is to say, without a plane of symmetry--while
the paratartrate will continue to have such a plane. Henceforward the
absolute identity stated by Mitscherlich to exist between the forms
of these two compounds will have no existence. It will be proved
that he has erred, and his note will no longer have in it anything
mysterious. As the optic action proper to the tartrates spoken of in
his note manifests itself by a deviation of the plane of polarisation
to the right, we have here a kind of dissymmetry which has nothing
incompatible with the dissymmetry of form. On the contrary, these
two dissymmetries can be referred to one and the same cause. In like
manner, the absence of dissymmetry in the form of the paratartrate will
be connected with the optical neutrality of that compound.

The fulfilment of Pasteur's hopes was only partial. The tartrates
of soda and ammonia presented, as did all the other tartrates, the
dissymmetry manifested by the absence of any plane of symmetry; that is
to say, the crystals of this salt placed before a mirror produced an
image which was not superposable upon the crystal. It was like a right
hand having its left for an image. With regard to the paratartrates of
soda and ammonia, one circumstance struck Pasteur in a quite unexpected
manner. Far from establishing in the crystals of this salt the absence
of all dissymmetry, he found that they all manifestly possessed it.
But, strange to say, certain crystals possessed it in one sense and
other crystals in a sense opposite. Some of these crystals, when
placed before a mirror, produced the image of the others, and one of
the two kinds of crystals corresponded rigorously in form with the
tartrate prepared by means of the tartaric acid of the grape. Pasteur
continued his reasoning thus:--Since there is no difference between
the form of the tartrate derived from the tartaric acid of the grape
and one of the two kinds of crystals deposited at the moment of
crystallisation of the paratartrate, the simple observation of the
dissymmetry proper to each will enable me to separate, by hand, all
the crystals of the paratartrate which are identical with those of
the tartrate. By ordinary chemical processes I ought to be able to
extract a tartaric acid identical with that of the grape, possessing
all its physical, mineralogical, and chemical properties--that is to
say, a tartaric acid possessing, like the natural tartaric acid of the
grape, dissymmetry of form, and exerting an action on polarised light.
_Per contra_, I ought to be able to extract from the second sort of
crystals, associated with the former in the paratartaric group, an
acid which will reproduce ordinary tartaric acid, but possessing a
dissymmetry of an inverse kind and exerting an action equally inverse
on polarised light.

With a feverish ardour Pasteur hastened to make this double experiment.
Imagine his joy when he saw his anticipations not only realised but
realised with an exactitude truly mathematical. His delight was so
great that he quitted the laboratory abruptly. Hardly had he gone
out when he met the assistant of the physical professor. He embraced
him, exclaiming, 'My dear Monsieur Bertrand, I have just made a great
discovery! I have separated the double paratartrate of soda and ammonia
into two salts of inverse dissymmetry, and exerting an inverse action
on the plane of polarisation of light. I am so happy that a nervous
tremulousness has taken possession of me, which prevents me from
looking again through the polariscope. Let us go to the Luxembourg, and
I will explain it all to you.'

These results excited in a high degree the attention of the Academy of
Sciences, where sat, at the time now referred to, Arago, Biot, Dumas,
De Senarmont, and Balard. It might be said without exaggeration that
the Academy was astounded. At the same time there were many members who
were slow to believe in this discovery. Charged with drawing up the
report, M. Biot began by requiring from Pasteur the verification of
each point which he had announced. To this verification M. Biot brought
his habitual precision, which was associated with a kind of suspicious
scepticism.

In one of his lectures Pasteur thus described his interview with M.
Biot:--'He made me come to his house, where he put into my hands
some paratartaric acid which he had carefully studied himself, and
found perfectly neutral as regards polarised light. It was not in the
laboratory of the Ecole Normale, it was in his own kitchen, and in his
presence, that I was to prepare this double salt with soda and ammonia
procured by himself. The liquor was left slowly to evaporate, and at
the end of ten days, when it had deposited thirty or forty grammes of
crystals, he begged me to go over to the College de France to collect
the crystals and to extract from them specimens of the two kinds, which
he proposed to have placed, the one on his right hand, the other on
his left, desiring me to declare if I was ready to re-affirm, that
the crystals to the right would turn the plane of polarisation to
the right and the others to the left. This declaration made, he said
that he would charge himself with the rest of the inquiry. M. Biot
then prepared the solutions in well-measured proportions, and at the
moment of observing them in the polarising apparatus he invited me
again to come into his study. He placed first in the apparatus the
most interesting solution, that which ought to deviate to the left.
Without even making any measurements, he saw, by the mere inspection of
the colours of the ordinary and extraordinary images of the analyser,
that there was a strong deviation to the left. Visibly moved, the
illustrious old man took my arm and said, "My dear child, I have loved
science so well throughout my life that this makes my heart beat."'

The emotion of M. Biot was all the more profound because he had been
himself the first to discover the rotation of the plane of polarisation
by chemical substances, and had, for more than thirty years, affirmed
that the study of these substances and of their action in regard to
rotatory polarisation was, perhaps, the surest means of penetrating
into the intimate constitution of bodies. His counsels were received
with deference, but they had never been followed out. And now there
appeared before the old man, already somewhat discouraged, a youth
of twenty-five, who from his first investigation had proved himself
a master, who had dissipated the obscurities of the famous German
note, and created a new chapter in crystallographic chemistry. The
composition and nature of paratartaric acid had been explained, and
a new substance, the left-handed tartaric acid, with its truly
surprising properties, had been discovered; molecular physics and
chemistry had been enriched with new facts and theories of great value.

The first care of Pasteur, after having discovered the left-handed
tartaric acid and the constitution of paratartaric acid, was to compare
very carefully the properties of the new left-handed acid with those of
the right, endeavouring to determine by strict experiment the influence
on these properties of the internal atomic arrangements of the two
acids. Although we are unable to picture the exact figure of these
atomic groupings, there can be no doubt that they are formed of the
same elementary particles, that they are, moreover, dissymmetrical, and
that, in short, the dissymmetry of the one group is the same as that of
the other, but in an inverse sense. If, for example, the arrangement
of the atoms of the right-handed tartaric acid present the exterior
appearance of an irregular pyramid, the arrangement of the atoms of the
left-handed tartaric acid ought, of necessity, to present the form of a
pyramid irregular in the inverse sense.


                                  II.

Nominated assistant professor of chemistry at Strasburg, Pasteur
followed up with enthusiasm these curious studies. To interrupt them
for an instant it required nothing less than his engagement with
Mademoiselle Marie Laurent, daughter of the Rector of the Academy.
It is even asserted that on the very morning of his marriage it was
necessary to go to his laboratory and remind him of the event that
was to take place on that day. But if Pasteur was thus guilty of an
absent-mindedness worthy of La Fontaine, he proved as a husband so
different from La Fontaine that Madame Pasteur, when reminded of this
lapse of memory, receives the reminder with an indulgent smile.

But to return to the laboratory: Under the same conditions of weight,
temperature, and quantity of solvent, Pasteur placed successively, in
presence of the two acids, all the substances capable of combining with
them. In this way he obtained right-handed and left-handed tartrates
of potash, of soda, of ammonia, of lime, and of all the oxides
properly so called. He applied himself to the compounds--and they are
numerous--which deposit themselves in liquids under well-determined
crystalline forms. Without entering into the details of these long
and patient studies, it may be stated generally that Pasteur proved
that whatever could be done with one of the tartaric acids could be
repeated rigorously, under similar conditions, with the other, the
resultant products manifesting constantly the same properties, with
the single difference already exhibited by the two acids--that in the
one case the deviation of the plane of polarisation was to the right,
while in the other it was to the left. With regard to all their other
properties, both chemical and physical, the identity was absolute.
Solubility, simple refraction by solutions, double refraction by
crystals, the action of heat in producing decomposition, &c., the
similitude extended to the most perfect identity.

The Academy of Sciences, which shows by the rarity of its reports the
importance which it attaches to them, gave for the second time an
account of these new researches. M. Biot was again the reporter. It was
with a sort of coquetry that Pasteur brought from Strasburg perfectly
labelled specimens of the magnificent crystallisations of the double
series of right-handed and left-handed tartrates. By means of models he
was able to render the forms of these crystals visible at a distance.

M. Biot undertook to bring the subject before the Academy. On the
morning of the day when he was to read his report he spent several
hours in conversation with Pasteur. M. Biot became so excited during
the discussion that Madame Biot, with the solicitude peculiar to the
wives of Academicians, requested Pasteur to change the subject of
conversation.

The members of the Academy shared the enthusiasm of M. Biot. Arago
moved that the report be inserted in the collected _memoires_ of the
Academy. This was an exceptional honour. Arrived for the most part at
the end of their own careers, these learned men observed with pleasure
the incipient ray which had not yet become a glory but which was the
precursor thereof.

                   *       *       *       *       *

'My young friend,' said M. Biot to Pasteur, when presenting him to
Mitscherlich somewhere about that time, 'you may boast of having done
something great, in having discovered what had escaped such a man as
this.'

'I had studied,' replied Mitscherlich, not without a shade of regret,
addressing himself to Pasteur, 'I had studied with so much care and
perseverance, in their smallest details, the two salts which formed the
subject of my note to the Academy, that, if you have established what I
was unable to discover, you must have been guided to your result by a
preconceived idea.'

Mitscherlich was right, and this preconceived idea might have been
formulised thus: A dissymmetry in the internal molecular arrangement
of a chemical substance ought to manifest itself in all its external
properties which are themselves capable of dissymmetry.

                   *       *       *       *       *

If this theoretic conception was correct, Pasteur might expect to
find that all the substances in which M. Biot had observed the power
of rotating the plane of polarisation would possess the crystalline
dissymmetry revealed by the absence of superposability. The result was
in great part conformable to those previsions. The substances which
acted upon polarised light, as liquids or solutions, were generally
found by Pasteur to produce dissymmetric crystals. Some of them,
however, notwithstanding their power of crystallisation, exhibited,
when crystallised, no dissymmetric face. This difficulty did not deter
Pasteur. It gave him, on the contrary, the opportunity of showing that
when a theory had in so many cases proved itself correct, an apparent
objection must not be assumed insuperable without first sounding it to
the bottom. May it not be, he reasoned, that the absence of dissymmetry
in substances which have the molecular rotatory power is not an
accident; and may it not be possible, by changing the conditions of the
crystallisation, to make the dissymmetry appear?

Then, in order to modify the crystalline forms of substances which
did not show themselves to be spontaneously dissymmetrical, Pasteur
employed a method which had been often tried before, though its
principles could not be explained or its effects foreseen. In imitation
of Rome de Lisle, Leblanc, and Beudant, he varied the nature of his
solvents; he introduced into the solution, sometimes an excess of acid
or of base, sometimes foreign matters incapable of acting chemically
upon those which were to be modified; he even employed sometimes impure
mother liquids. On each occasion new facets were thus produced, and
these new facets showed the kind of dissymmetry which the optical
character demanded. Although he had to limit his researches to those
substances which, by their ready crystallisation and the beauty of
their forms, lent themselves best to this class of proofs, the results
were so far in accord with the previsions of theory, that no reasonable
doubt could exist as to the necessary correlation between dissymmetry
and the power to deviate polarised light.

                   *       *       *       *       *

By these researches Pasteur was led to a conclusion, which is worthy
of the most serious consideration, regarding the difference which
exists between mineral species and artificial products on the one
side, and the organic products which can be extracted from vegetables
or animals on the other. All mineral or artificial products--for
brevity let us say all the products of inorganic nature--have a
superposable image, and are therefore not dissymmetrical, while
vegetable and animal products--in other words, products formed under
the influence of life--have an image not superposable; that is to say,
they are atomically dissymmetrical, this dissymmetry expressing itself
externally in the power of turning the plane of polarisation. If any
exceptions exist they are more apparent than real. Pasteur himself
pointed out some of them, while demonstrating at the same time that
it is easy to explain why all trace of dissymmetry disappears when
substances which, like rock crystal, have an external dissymmetry are
subjected to the process of solution.

An apparent contradiction to this law of demarcation between artificial
products and those of animal and vegetable life is presented by the
existence in living creatures of substances like oxalic acid, formic
acid, urea, uric acid, creatine, &c. None of these products exert an
action on polarised light or show any dissymmetry in the form of their
crystals. But it is necessary to observe that these products are the
result of secondary actions. Their formation is evidently governed by
the laws which determine the constitution of the artificial products
of our laboratories, or of the mineral kingdom properly so called.
In living beings they are the products of excretion rather than
substances essential to vegetable or animal life. When, on the other
hand, we consider the most primordial substances of vegetables and
animals--those whereof it may be justly said that they are born under
the directive influence of _becoming_ life, such as cellulose, fecula,
albumen, fibrine, &c.--they are found to possess the power of acting,
on polarised light, a characteristic necessary and sufficient to
establish their internal dissymmetry, even when, through the absence of
crystallising power, they fail to manifest this dissymmetry outwardly.

It is, therefore, true to say that the products of inorganic nature,
whether mineral or artificial, have never yet presented molecular
dissymmetry. It may also be affirmed that the substances which exert
the greatest influence in vital manifestations, which are present and
active in the seed and in the egg at the moment of the marvellous start
of animal and vegetable life, all present molecular dissymmetry.

Would it be possible to indicate a more profound distinction between
the respective products of living and of mineral nature, than the
existence of this dissymmetry on the part of the one and its absence
on the part of the other? Is it not strange that not one of these
thousands and thousands of artificial products of the laboratory, the
number of which is each day augmented, should manifest either the power
of turning the plane of polarisation or non-superposable dissymmetry?
No doubt natural dissymmetric substances--gum, sugar, tartaric and
malic acids, quinine, strychnine, essence of turpentine, &c.--may be
employed in forming new compounds which remain dissymmetric, though
they are artificially prepared; but it is evident that all these new
products do but inherit the original dissymmetry of the substances from
which they are derived. When chemical action becomes more profound, all
dissymmetry disappears, and is never seen to reappear in the successive
ulterior products.

What can be the causes of so great a difference? M. Pasteur has often
expressed to me the conviction that it must be attributed to the
circumstance that the molecular forces which operate in the mineral
kingdom, and which are brought into play every day in our laboratories,
are forces of the symmetrical order; while the forces which are
present and active at the moment when the grain sprouts, when the egg
develops, and when, under the influence of the sun, the green matter
of the leaves decomposes the carbonic acid of the air and utilises in
divers ways the carbon of this acid, the hydrogen of the water, and the
oxygen of these two products--are of the dissymmetric order, probably
depending on some of the grand, dissymmetric, cosmic phenomena of our
universe. While expounding this opinion before the Academy of Sciences,
Pasteur, on one occasion, expressed himself thus:--

'The universe is a dissymmetric whole. I am inclined to think that
life, as manifested to us, must be a function of the dissymmetry of the
universe or of the consequences that follow in its train. The universe
is dissymmetrical; for, placing before a mirror the group of bodies
which compose the solar system, with their proper movements, we obtain
in the mirror an image not superposable on the reality. Even the motion
of solar light is dissymmetrical. A luminous ray never strikes in a
straight line, and at rest, the leaf wherein organic matter is created
by vegetable life. Terrestrial magnetism, the opposition which exists
between the north and south poles of a magnet, the opposition presented
to us by positive and negative electricity, are all the resultants of
dissymmetric actions and motions.'

                   *       *       *       *       *

At the moment when Pasteur, entering upon the labours which form the
principal subject of this book, abandoned the study of molecular
physics and chemistry which had previously occupied him, all his
thoughts were directed to the search of means suited to render evident
the influence of these causes and these phenomena. At Strasburg he
had procured powerful magnets with the view of comparing the actions
of their poles, and, if possible, of introducing by their aid, among
the forms of crystals, a manifestation of dissymmetry. At Lille, where
he was nominated Dean of the Faculty of Sciences in 1854, he had
contrived a piece of clockwork intended to keep a plant in continual
rotary motion, first in one direction and then in the other. 'All
this was gross,' he said to me one day; 'but, further than this, I
had proposed, with the view of influencing the vegetation of certain
plants, to invert, by means of a heliostat and a reflecting mirror,
the motion of the solar rays which should strike them from the birth
of their earliest shoots, and in this direction there was more to
be hoped for.' He never spoke of these attempts, because he had not
had the time to follow them to the issues of which he dreamed; but to
this day he remains persuaded that the barrier which exists between
the mineral and organic kingdoms--and which is revealed to our eyes by
the impossibility of producing, in the reactions of the laboratory,
dissymmetric organic substances--can never be crossed until we have
succeeded in introducing among these reactions influences of the
dissymmetric order. According to Pasteur, success in this direction
would give access to a new world of substances, and probably also of
organic transformations. As we have succeeded in finding the inverse
of right-handed tartaric acid, we may hope to obtain some day all the
immediate principles inverse to those now known to us. Who could say
what vegetable and animal species would become if it were possible to
replace, in the living cells, cellulose, albumen, and their congeners,
by their isomers with an inverse action? Certainly the thing is not
easy, and Pasteur would be the last person to deceive himself as to
the difficulty of the problem. His latest thought on the matter is
this:--When the attempt is made to introduce into living species
primordial substances, inverse to those now existing, the great
difficulty will be to master the _tendency_ (_devenir_[7]) proper to
the species, a tendency which is potential in the germ of each of them.
In this germ, it is to be feared, the dissymmetry of the dissymmetric
primordial substances which it embraces will always manifest itself.
Ah! if spontaneous generation were possible; if we could form from
mineral matter a living cell, how much more accessible would the
problem become! However this may be, we must seek, by all possible
means, to produce molecular dissymmetry by the application of forces
which have a dissymmetric action. 'We must,' said Pasteur to me on the
day when, starting from the note of Mitscherlich, he passed all these
things in review, 'we must invoke the action of solenoid or helix.
Entangled at present in labours more than sufficient to absorb whatever
of ardour and of force still remains to me, I have no longer time to
occupy myself with these questions.' But what great things are to be
done in following out this order of ideas, and what a route will be opened to young men possessed of that genius of invention which is evoked so often by persistent work!

댓글 없음: